
Small World Phenomena and
the Greedy Algorithm

Chenkai Wang
Abstract

In this essay, we provide an examination of the small world phe-
nomenon by first introducing the concept. Following this, we con-
struct a network capable of reproducing the phenomenon and provide
a demonstration of the network’s properties through solid proofs. In
addition, we present a greedy algorithm to investigate the relationship
between algorithm time consumption and clustering coefficient and find
consistency between theoretical and experimental results.
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1 Introduction of the problem

1.1 Small world phenomena

In 1967, Milgram completed his famous sociological small world experi-
ment[3], revealing that we are much closer to a stranger than we think. More
specifically, randomly take two people on the planet, averagely we only need
5.5 mediators to get in touch with each other. The picture below gives an
example of a possible path.

Figure 1: One possible path in the small world experiment

In conclusion, short paths are ubiquitous in the real world. Then a natural
question arises: how can we find such paths? In section 4, we will provide an
algorithm to solve it.
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1.2 From the reality to the network

Think of every person on the planet as a node. If two people know each
other, use a bilateral edge to connect the nodes of those two people so that we
can get a social network. A natural thought is that once we can fully build
such a network, we might be able to pinpoint the distance between any two
people. However, building such an explicit network is impossible. There are
at least three reasons:

• store a network with so many nodes and edges is expensive;

• people are socializing and making new friends anytime and anywhere,
and the network cannot give real-time feedback;

• we do not care about the exact distance of two picked people. Instead, we
focus more on the average distance between two people and the existing
path.

Therefore, we need to build a network that has the following features. On
the one hand, its construction rules should be as simple as possible, which
makes it convenient for us to study the behavior of different scales. On the
other hand, the simple structure network can be combined with the small world
phenomenon, which means existing a solid interpretation.

2 The construction of the network

We derive a network below from an 𝑛 × 𝑛 lattice with two kinds of edges
to meet the requirement.
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Figure 2: The built network[2]

• The former we call it directed short-range edge. Each node, say 𝑢, has
a short-range connection to its nearest neighbors, say 𝑎, 𝑏, 𝑐, 𝑑.

• The latter we call it directed long-range edge. For each node, say 𝑢, has
a probability proportional to 𝑑(𝑢, 𝑣)−𝑟 to be connected to a randomly
chosen node 𝑣, where 𝑟 is the fixed clustering coefficient and 𝑑(𝑢, 𝑣)
denotes the Manhattan distance of 𝑢 and 𝑣.

For long-range edges, we will add a constraint that edges can only be made
in the horizontal or vertical direction and compare it to the case with no
constraint. The comparison part will be demonstrated in the next section.

To continue, we need to provide a more precise definition. In the above
𝑛 × 𝑛 network {(𝑖, 𝑗) ∶ 𝑖 ∈ {1, 2, … , 𝑛}, 𝑗 ∈ {1, 2, … , 𝑛}}, the distance between
any two nodes 𝑢(𝑖, 𝑗) and 𝑣(𝑘, 𝑙) is defined as 𝑑(𝑢, 𝑣) = |𝑘−𝑖|+|𝑙−𝑗|. Moreover,
we introduce two universal parameters, 𝑝, and 𝑞. The node 𝑢 has a directed
short-range edge to its nearest neighbors with distance 𝑝. In figure 2, 𝑝 = 1.
Besides that, The nodes 𝑢 will have 𝑞 directed long-range edges. In figure 2,
𝑞 = 1.
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3 The proof and properties for the built net-
work

3.1 The proof of two important theorems

In Section 2, it was discussed that there are two different networks - one
with a constraint and one without. This section aims to demonstrate the prop-
erties of the network with the constraint, using theorems and proofs primarily
borrowed from the work of Kleinberg in 2000[1].

Theorem 1 (original theorem 1). (a) Let 0 ≤ 𝑟 < 2. There is a constant 𝛼𝑟,
depending on 𝑝, 𝑞, 𝑟, but independent of 𝑛, so that the expected delivery time
of any decentralized algorithm is at least 𝛼𝑟𝑛(2−𝑟)/3.

(b) Let 𝑟 > 2. There is a constant 𝛼𝑟, depending on 𝑝, 𝑞, 𝑟, but independent
of 𝑛, so that the expected delivery time of any decentralized algorithm is at least
𝛼𝑟𝑛(𝑟−2)/(𝑟−1).

We have a similar result for the network with the constraint, denoted as
adjusted theorem 1.

Theorem 2 (adjusted theorem 1). (a) Let 0 ≤ 𝑟 < 1. There is a constant 𝛼𝑟,
depending on 𝑝, 𝑞, 𝑟, but independent of 𝑛, so that the expected delivery time
of any decentralized algorithm is at least 𝛼𝑟𝑛(1−𝑟)/3.

(b) Let 𝑟 > 1. There is a constant 𝛼𝑟, depending on 𝑝, 𝑞, 𝑟, but independent
of 𝑛, so that the expected delivery time of any decentralized algorithm is at least
𝛼𝑟𝑛(𝑟−1)/𝑟.

Proof. Here is the proof of the theorem 2(a).
The probability that a node 𝑢 chooses 𝑣 as its 𝑖𝑡ℎ out of 𝑞 long-range

contacts is 𝑑(𝑢, 𝑣)−𝑟/ ∑𝑣≠𝑢 𝑑(𝑢, 𝑣)−𝑟, and we have

∑
𝑣≠𝑢

𝑑(𝑢, 𝑣)−𝑟 ≥
𝑛/2

∑
𝑗=1

(1) (𝑗−𝑟) =
𝑛/2

∑
𝑗=1

𝑗−𝑟

≥ ∫
𝑛/2

1
𝑥−𝑟𝑑𝑥

≥ (1 − 𝑟)−1 ((𝑛/2)1−𝑟 − 1)

≥ 1
(1 − 𝑟)22−𝑟 ⋅ 𝑛1−𝑟
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where the last line follows if we assume 𝑛 ≥ 22−𝑟. Let 𝛿 = (1 − 𝑟)/3.
Let 𝑈 denote the set of nodes within lattice distance 𝑝𝑛𝛿 of 𝑡. Note that

|𝑈| ≤ 1 +
𝑝𝑛𝛿

∑
𝑗=1

4 ≤ 4𝑝2𝑛2𝛿

where we assume n is large enough that 𝑝𝑛𝛿 ≥ 2. Define 𝜆 = 1/ ((1 − 𝑟)26−𝑟𝑞𝑝2).
Let ℰ′ be the event that within 𝜆𝑛𝛿 steps, the message reaches a node other
than 𝑡 with a long-range contact in 𝑈. Let ℰ′

𝑖 be the event that in step 𝑖,
the message reaches a node other than 𝑡 with a long-range contact in 𝑈; thus
ℰ′ = ⋃𝑖≤𝜆𝑛𝛿 ℰ′

𝑖. Now, the node reached at step 𝑖 has 𝑞 long-range contacts
that are generated at random when it is encountered, so we have

Pr [ℰ′
𝑖] ≤ 𝑞|𝑈|

1
(1−𝑟)22−𝑟 ⋅ 𝑛1−𝑟

= (1 − 𝑟)24−𝑟𝑞𝑝2𝑛2𝛿

𝑛1−𝑟

Since the probability of a union of events is bounded by the sum of their
probabilities, we have

Pr [ℰ′] ≤ ∑
𝑖≤𝜆𝑛𝛿

Pr [ℰ′
𝑖]

≤ (1 − 𝑟)24−𝑟𝑞𝑝2𝑛2𝛿

𝑛1−𝑟

= (21 − 𝑟)24−𝑟𝜆𝑞𝑝2 ≤ 1
4

We now define two further events. Let ℱ denote the event that the chosen
source 𝑠 and the target 𝑡 are separated by a lattice distance of at least 𝑛/4.
One can verify that 𝑃𝑟 [ℱ] ≥ 1

2 . Since 𝑃𝑟 [ℱ ∨ ℰ′] ≤ 1
2 + 1

4 , Pr [ℱ ∧ ℰ′] ≥ 1
4 .

Finally, Let 𝑋 denote the random variable equal to the number of steps
taken for the message to reach 𝑡, and let ℰ denote the event that the message
reaches 𝑡 within 𝜆𝑛𝛿 steps. We claim that if ℱ occurs and ℰ′ does not occur,
then ℰ cannot occur. For suppose it does. Since 𝑑(𝑠, 𝑡) ≥ 𝑛/4 ≥ 𝑝𝜆𝑛𝛿, in
any 𝑠 − 𝑡 path of at most 𝜆𝑛𝛿 steps, the message must be passed at least once
from a node to a long-range contact. Moreover, the final time this happens,
the long-range contact must lie in 𝑈. This contradicts our assumption that ℰ′

does not occur.
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Thus 𝑃𝑟 [ℰ ∣ ℱ ∧ ℰ′] = 0, hence 𝐸 [𝑋 ∣ ℱ ∧ ℰ′] ≥ 𝜆𝑛𝛿. Since

𝐸 [𝑋] ≥ 𝐸 [𝑋 ∣ ℱ ∧ ℰ′] ⋅ Pr [ℱ ∧ ℰ′] ≥ 1
4

𝜆𝑛𝛿

Let 𝛼𝑟 = 1
4𝜆, since 𝛿 = 1−𝑟

3 , we know that the expected delivery time of any
decentralized algorithm is at least 𝛼𝑟𝑛(1−𝑟)/3, completing the proof.

Proof. Here is the proof of the theorem 2(b).
Consider a node 𝑢, and let 𝑣 be a randomly generated long-range contact

of 𝑣. For any 𝑚, we have

Pr[𝑑(𝑢, 𝑣) > 𝑚] ≤
2𝑛−2
∑

𝑗=𝑚+1
(4) (𝑗−𝑟)

= 4
2𝑛−2
∑

𝑗=𝑚+1
𝑗−𝑟

≤ ∫
∞

𝑚
𝑥1−𝑟𝑑𝑥

≤ (𝑟 − 1)−1𝑚1−𝑟 = 𝜀−1𝑚−𝜀

where 𝜀 = 𝑟 − 1.
We set 𝛽 = 𝜀

1+𝜀 , 𝛾 = 1
1+𝜀 , and 𝜆′ = 𝑚𝑖𝑛(𝜀,1)

8𝑞 . We assume 𝑛 has been chosen
large enough that 𝑛𝛾 ≥ 𝑝. Similar to part (a), we have

𝐸 [𝑋] ≥ 𝐸 [𝑋 ∣ ℱ ∧ ℰ′] ⋅ Pr [ℱ ∧ ℰ′] ≥ 1
4

𝜆′𝑛𝛽

Let 𝛼𝑟 = 1
4𝜆′, since 𝛽 = 𝜀

1+𝜀 = 𝑟−1
𝑟 the expected delivery time of any decen-

tralized algorithm is at least 𝛼𝑟𝑛(𝑟−1)/𝑟, completing the proof.

Theorem 3 (original theorem 2). There is a decentralized algorithm 𝒜 and a
constant 𝛼2, independent of 𝑛, so that when 𝑟 = 2 and 𝑝 = 𝑞 = 1, the expected
delivery time of 𝒜 is at most 𝛼2(𝑙𝑜𝑔𝑛)2.

We have a similar result for the network with the constraint, denoted as
adjusted theorem 2.

Theorem 4 (adjusted theorem 2). There is a decentralized algorithm 𝒜 and a
constant 𝛼′

2, independent of 𝑛, so that when 𝑟 = 1 and 𝑝 = 𝑞 = 1, the expected
delivery time of 𝒜 is at most 𝛼′

2(𝑙𝑜𝑔𝑛)2.
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Proof. Here is the proof of theorem 4. The probability that 𝑢 chooses 𝑣 as its
long-range contact is 𝑑(𝑢, 𝑣)−1/ ∑𝑣≠𝑢 𝑑(𝑢, 𝑣)−1 and we have

∑
𝑣≠𝑢

𝑑(𝑢, 𝑣)−1 ≤
2𝑛−2
∑
𝑗=1

(4) (𝑗−1)

≤ 4 + 4 ln(2𝑛 − 2)

≤ 4 ln(6𝑛)

Thus, the probability that 𝑣 is chosen is at least 𝑑(𝑢, 𝑣)−1/(4𝑙𝑛(6𝑛)). Let 𝐵𝑗

be the set of nodes within lattice distance 2𝑗 of 𝑡. There are at least

1 + 4 ×
2𝑗

∑
𝑖=1

1 > 2𝑗+2

nodes in 𝐵𝑗, each is within lattice distance 2𝑗+1 + 2𝑗 < 2𝑗+2 of 𝑢. If any of
these nodes is the long-range contact of 𝑢, it will be 𝑢′𝑠 closest neighbor to 𝑡;
thus, the message enters 𝐵𝑗 with the probability at least

2𝑗+2

4 ln(6𝑛)2𝑗+2 = 1
4 ln(6𝑛)

Let 𝑋𝑗 denote the total number of steps spent in phase 𝑗, 𝑙𝑜𝑔(𝑙𝑜𝑔𝑛) ≤ 𝑗 < 𝑙𝑜𝑔𝑛.
We have

𝐸 [𝑋𝑗] =
∞

∑
𝑖=1

𝑃𝑟 [𝑋𝑗 ≥ 𝑖] = 4𝑙𝑛(6𝑛)

Let 𝑋 denote the total number of steps spent by the algorithm. We have

𝑋 =
log 𝑛

∑
𝑗=0

𝑋𝑗

and so by the linearity of expectation we have 𝐸 [𝑋𝑗] ≤ (1+𝑙𝑜𝑔𝑛)(4𝑙𝑛(6𝑛)) ≤
𝛼′

2(𝑙𝑜𝑔𝑛)2 for a suitable choice of 𝛼′
2, completing the proof.

3.2 The properties of two networks based on the theo-
rems

In this section, we will provide a summary of two network properties, which
are listed as follows.
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• For the unconstrained network, we have

𝐸 [𝑋] ≥ 𝛼𝑟𝑛(2−𝑟)/3, 0 ≤ 𝑟 < 2

𝐸 [𝑋] ≥ 𝛼𝑟𝑛(𝑟−2)/(𝑟−1), 𝑟 > 2

optimal 𝑟 = 2.

• For the constrained network, we have

𝐸 [𝑋] ≥ 𝛼𝑟′𝑛(1−𝑟′)/3, 0 ≤ 𝑟′ < 1

𝐸 [𝑋] ≥ 𝛼𝑟′𝑛(𝑟′−1)/(𝑟′), 𝑟′ > 2

optimal 𝑟′ = 1.

• The relation between 𝑟 and 𝑟′ is 𝑟′ = 𝑟 − 1. which reveals that there
exists a translation when adding the constraint.

• The expected delivery time of the decentralized algorithm 𝒜 with 𝑝 =
𝑞 = 1 and optimal 𝑟′𝑠 for both cases are at most 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 × (𝑙𝑜𝑔𝑛)2,
where different networks correspond to different constants.

4 The greedy algorithm and its simulation

4.1 The greedy algorithm

Now the problem becomes that for the selected target node 𝑣, how to
find the shortest path from the specified node 𝑢. We will propose a greedy
algorithm to solve the question.

9
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Algorithm 1 The greedy algorithm
Input: 𝑛, 𝑝, 𝑞, 𝑟, 𝑢, 𝑣

1: Create 𝜔 and 𝑆𝑡𝑒𝑚𝑝.
2: while 𝑢 ≠ 𝑣 do
3: Find the short-range connections to 𝑢′𝑠 nearest neighbors according to

parameter 𝑝 and add the nodes to the set 𝑆𝑡𝑒𝑚𝑝.
4: Find the long-range connections to 𝑢 according to parameter 𝑞 and add

the nodes to the set 𝑆𝑡𝑒𝑚𝑝 again.
5: 𝜔 ← 𝑡ℎ𝑒 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑆𝑡𝑒𝑚𝑝 𝑤𝑖𝑡ℎ 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑣.
6: if 𝜔 ≠ 𝑣 then
7: Add 𝜔 to 𝑆.
8: 𝑢 ← 𝜔.
9: clear 𝑆𝑡𝑒𝑚𝑝.

10: end if
11: end while
Output: 𝑆

The input parameters have already been explained before. Notice that 𝑢
always gets closer to 𝑣 after each circulation, we know that the algorithm must
converge eventually. We know that the greedy algorithm obtains an optimal
local solution, but the locally optimal solution is not always the optimal global
solution. However, here we do not care whether we get global optimal or not
due to the following reasons:

• it is almost impossible to get a global optimal;

• even if we could get a globally optimal, it is not affordable;

• we get local optimal with very little time and space complexity compared
to global optimal, and we are happy to lose a little accuracy in exchange
for a huge increase in efficiency.

The greedy algorithm can be applied to both network types by following
the appropriate constraints in steps 4 and 5.

4.2 Simulation of the greedy algorithm

The primary figure of merit is its expected cost time 𝑇, which represents
the expected number of steps from the specified node 𝑢 to the target node
𝑣. The greedy algorithm use only local information. Compared with a global
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knowledge of all connections in the network, the shortest path can be found
very simply.

Now we set 𝑛 = 20000, 𝑢 = (1, 1), 𝑣 = (20000, 20000), 𝑝 = 1, 𝑞 = 1. We
want to find the relationship between expected delivery time 𝑇 and clustering
coefficient 𝑟. Let 𝑟 increase from 0 by 0.1 to 2.5 and record the delivery time
𝑇 of each 𝑟. We can get the following pictures for both networks.

Figure 3: without constraint Figure 4: with constraint

It is observed in figure 3 and 4 that the minimum delivery time is attained at
𝑟 = 2 in the absence of constraints and at 𝑟 = 1 in the presence of constraints.
Furthermore, it is noted that the grey-shaded area remains consistent across
both scenarios, which is in concordance with the results outlined in section
3.2.

5 Conclusion

Based on the process in sections 2, 3, and 4, we can conclude that the
theoretical and experimental results are consistent. We observe that when
there is no constraint, the delivery time reaches the minimum at 𝑟 = 2, and
when there is a constraint, the delivery time reaches the minimum at 𝑟 = 1.
Additionally, the constraint acts as a translation, and the details can be found
in section 3.2.
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